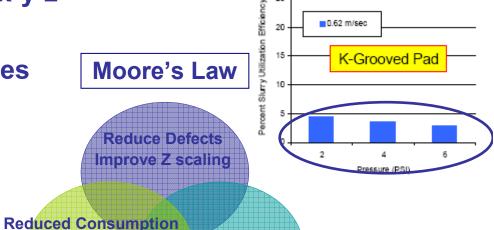


- Introduction
 - Company introduction
 - Motivation (CMP cost, defectivity, process stability, ITRS CMP metrics, environmental footprint, etc.)
- Pad Surface Manager
 - Concept of in-situ tribology management
- Data
 - Conductivity and pH versus time for STI polish effluent
 - Tribology alteration during an ILD polish
 - Conductivity versus time for Cu polish effluent
 - Particles from an ILD polish effluent
 - Wafer particle reduction during an ILD polish

Company Background

- Confluense was spun-off from TBW Industries in 2008
 - TBW's "Clean Through"TM abrasive designs enabled development of the Pad Surface Manager
- Confluense is a company dedicated to advanced abrasive surface finishing equipment and technology. We are guided by the following objectives:
 - Provide the lowest CoO
 - Efficient use of consumables, reduced defectivity, improved throughput
 - Provide real-time management of polishing tribology
 - Active measurement and control of material removal kinetics
 - Provide in-situ endpoint capabilities
 - Endpoint detection through effluent analysis, end-state control through polishing film management (Friction, Lubrication, Charge)
 - Provide sustainable technology
 - Effective consumption of materials and waste separation/treatment


- We offer contract services for:
 - **Material development**
 - **Process analysis**
 - **Process development**
- Our technology is available to address your CMP problems!

Motivation

- CMP has a large environmental footprint
- High defectivity
 - Random Particles, scratches
 - Systematic Process variation, thickness, non-planarity
 - Parametric Layout related x-y-z
- High cost per wafer pass
 - Inefficient use of consumables
- End user led integration
 - Multi-material, -scale, -step
- Fragmented supply chain
 - No one-stop shops
- Long development cycles
 - e.g., low-K

Environment

Faster Ramp

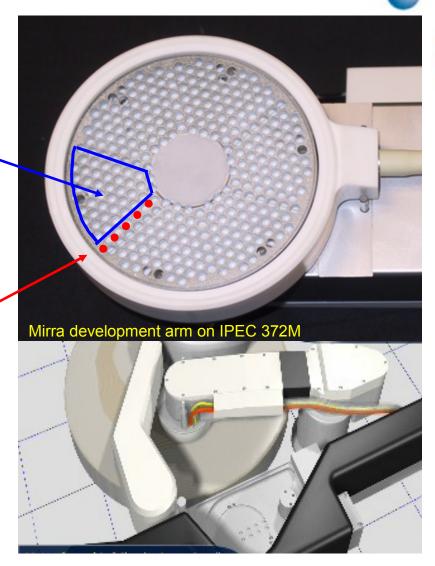
Reduce CoO

Recycling

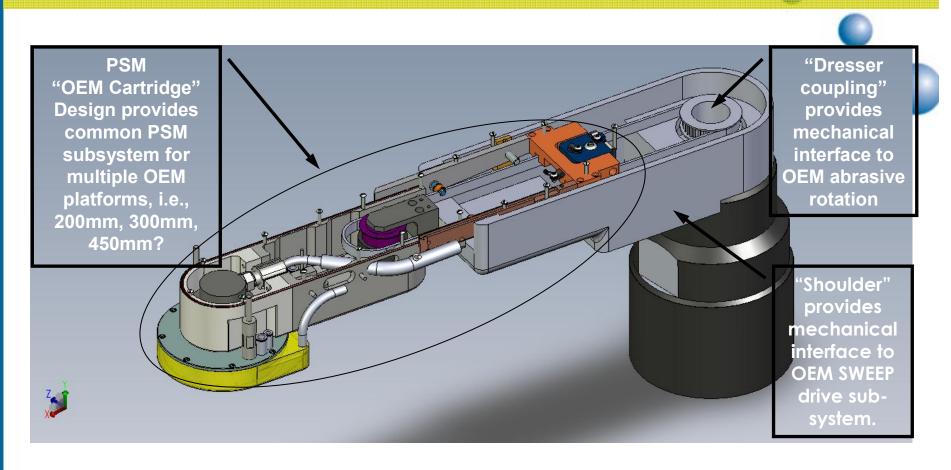
Economics

Motivation

- 2009 ITRS revision has STI CMP metrics in the FEP tables (Table FEP14 CMP Process Technology Requirements)
 - Contains metrics on particles, scratches, RR uniformity, and WIW uniformity
 - Critical particle size 25nm
 - Critical scratch length 23nm
 - **RR** uniformity (3σ) 8%
 - WIW uniformity (3σ) 6%
 - CMP will require improvements to meet these metrics



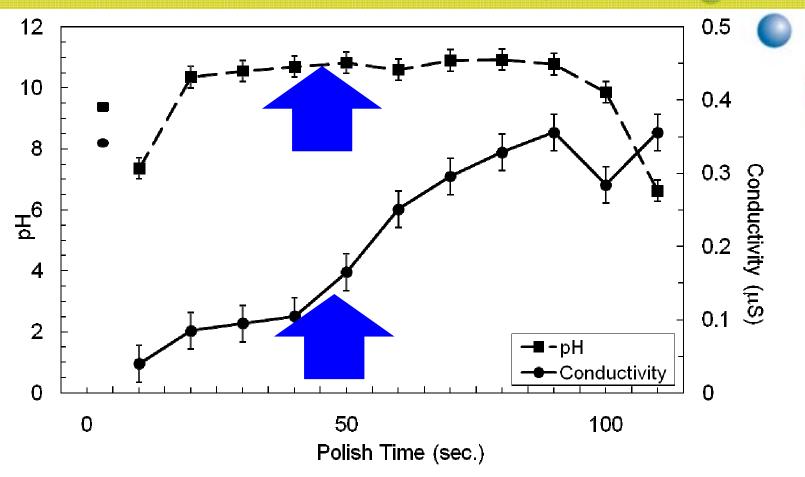
- Introduction
 - Company introduction
 - Motivation (CMP cost, defectivity, process stability, ITRS CMP metrics, environmental footprint, etc.)
- Pad Surface Manager
 - Concept of in-situ tribology management
- Data
 - Conductivity and pH versus time for STI polish effluent
 - Tribology management during an ILD polish
 - Conductivity versus time for Cu polish effluent
 - Particles from an ILD polish effluent
 - Wafer particle reduction during an ILD polish


Pad Surface Manager

- In situ exchange of materials at the "working interface"
 - Vacuum waste through the abrasive conditioner
 - Actively remove polishing wastes: film, slurry, pad - enables replenishment, removes defect sources
 - Analyze process effluent feedback, control, treatment
 - Direct effluent to reprocessing or waste
 - Fluids introduced over entire area
 - Pad cleaning agents
 - Process tuning; Surfactants, Inhibitors
 - Clean pad and conditioner between wafers
 - Use oxalic or citric acid solutions

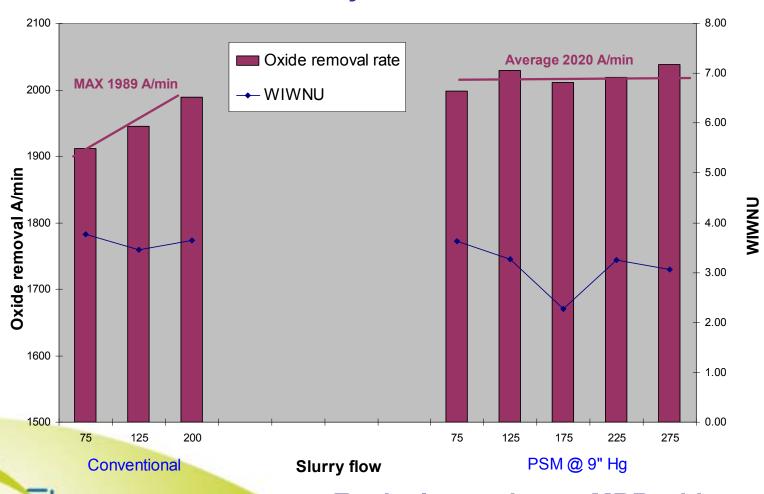
Pad Surface Manager

Modular unit adaptable to different wafer sizes and tool configurations

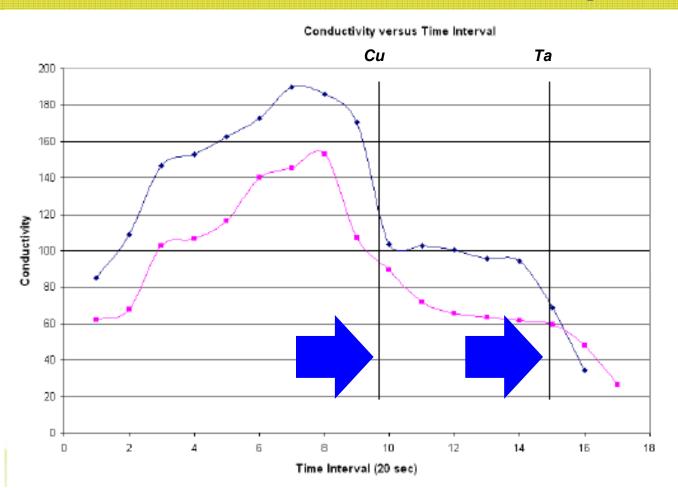


Jense

- Introduction
 - Company introduction
 - Motivation (CMP cost, defectivity, process stability, ITRS CMP metrics, environmental footprint, etc.)
- Pad Surface Manager
 - Concept of in-situ tribology management
- Data
 - Conductivity and pH versus time for STI polish effluent
 - Tribology management during an ILD polish
 - Conductivity versus time for Cu polish effluent
 - Particles from an ILD polish effluent
 - Wafer particle reduction during an ILD polish


Variation of Conductivity and pH

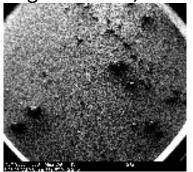
- An order of magnitude variation in conductivity
 - Indicates a significant variation in ionic content
 - The pH changed by ~ 4 units
 - Could alter chemical activities

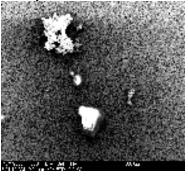

Tribology Management

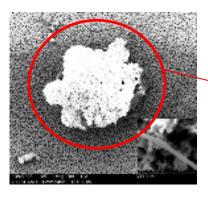
Oxide removal rate vs. slurry flow - IPEC POR

Equivalent or better MRR with reduced slurry flow

Cu and Barrier Polish Endpoints

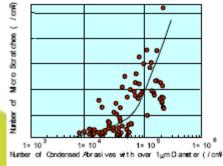


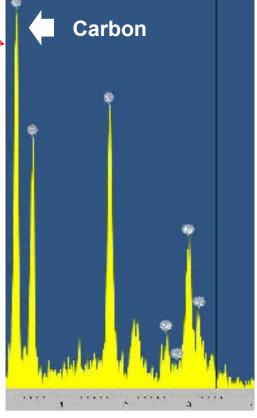

Inflection points at 200 and 300 seconds correspond to the end points for Cu and Ta, respectively


Particles Removed from the Pad

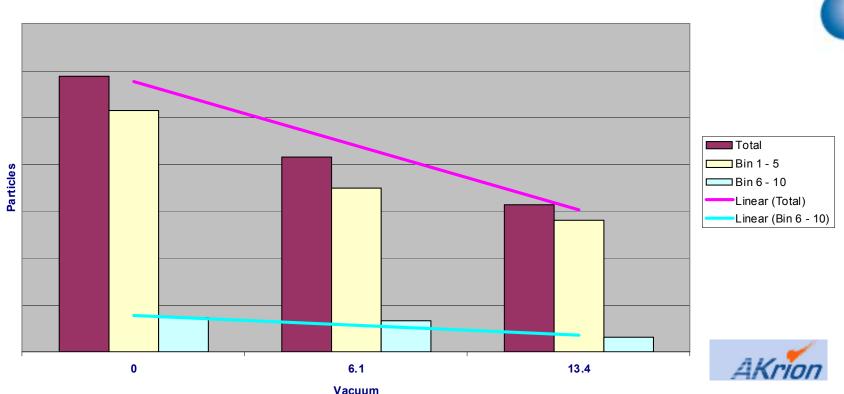
- Pad effluent sampling
 - Filtration membrane with 800nm pores

High vacuum, low slurry





Carbon peak from SEM EDS identified pad debris



Wafer Particle Reduction

LPC were reduced 30% at mid range; 50% at high vacuum

PSM CoO Benefits

Metric	Value	Source
Wafer layers per machine - hour	45	WWK CoO model*
Production hours per machine - year	7460	7 x 24 – 15% down
Wafer layers per machine year	335,700	Result 45 x 7460
Annual Dielectric CMP savings	\$1,436,796	\$4.28 savings/polish* \$7.65 CoO/polish baseline
Annual Copper CMP savings	\$3,336,858	\$9.94 savings/polish* \$17.65 CoO/polish baseline

Prepared by Daren L. Dance VP, Technology Wright Williams & Kelly, Inc. 26 Oct 2005 Revised 23 Dec 2005

- Introduction
 - Company introduction
 - Motivation (CMP cost, defectivity, process stability, ITRS CMP metrics, environmental footprint, etc.)
- Pad Surface Manager
 - Concept of in-situ tribology management
- Data
 - Conductivity and pH versus time for STI polish effluent
 - Tribology management during an ILD polish
 - Conductivity versus time for Cu polish effluent
 - Particles from an ILD polish effluent
 - Wafer particle reduction during an ILD polish

Conclusions

- Enables real-time control of polishing process through tribology management
- Offers endpoint detection through analysis of effluents
- Reduced wafer LPC by 30% 50%
- Enables CMP to be a sustainable HV manufacturing technology
 - Reduces the environmental footprint
 - Allows separation of solids from liquids to simplify the waste stream and/or allow recycling
- Can yield a 45% improvement in CoO with an ROI of ≥ \$1M/tool/yr from model outputs based on real data inputs

Sustainable Technologies Award

Confluense was selected as one of the four finalists for the "SEMICON West 2009 Sustainable Technologies Award"

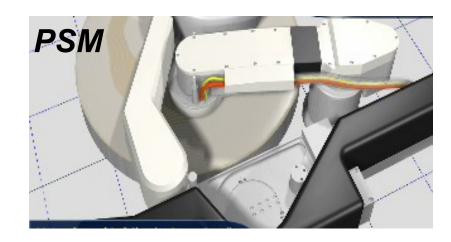
The award winner will be announced in August

References

- Y. Gotkis, "A Couple of Considerations on the Dynamics of Defectivity Generation in CMP Technology", NCAVS CMPUG Meeting (April 2007)
- J. G. Park, "CMP Process: Its Challenges and Future", SPCC (March 2009)
- C. L. Borst, "A Case Study: Topographic and Spectroscopic Analysis of Slurry Particle Retention for Cu CMP", Levitronix CMP Users Conference (2007)
- A. Philipossian and A. Mitchell, "Mean Residence Time and Removal Rate Studies in ILD CMP", J. Electrochem. Soc. 151, (6) 6402-6407 (2004); A. Philipossian, et al, "Analytical & Functional Evaluation of Fresh, Spent & Reprocessed Fumed Silica Slurries in ILD CMP", 1st International Workshop on Nanoscale Semiconductor Devices (2004)
- S. J. Benner and D. L. Dance, "CMP Productivity Improvement Using Pad Surface Management", ISIM Symposium on Equipment-Related Productivity Improvement Activities (March 2006)
- C. Burkhard, J. Zhao, P. Wu, M. Fox, S. V. Babu, and Y. Li, "Wafer Characterization and Spent Slurry Evaluation with a Novel Pad Conditioner", CMP-MIC (2004)

THANK YOU FOR YOUR ATTENTION!

Visit us at the TBW booth, #2209 in the South Hall



Contact Information

- Stephen Benner, President
 - sjbenner@confluense.com
- Darryl Peters, Ph.D., Process Technology VP
 - dwpeters@confluense.com

Confluense 7277 William Ave., Suite 300 Allentown, PA 18106 (610) 395-7840

