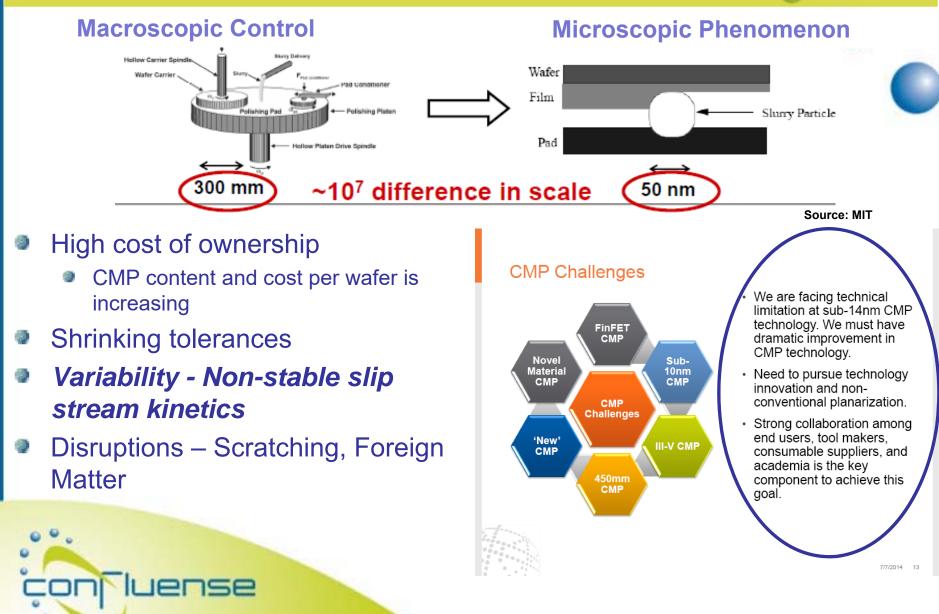


luense

Outline

- Confluense Background
- CMP Variability Sources
- Improvement Methodology
- State Variable Measurements
- Summary



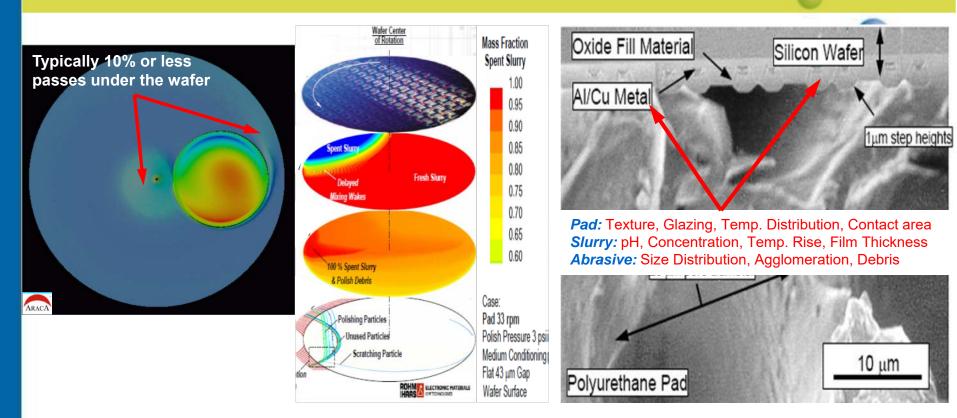
Confluense Background[®]

Founded: Location:	2008 Furlong, PA			
Experience:	25 years semi CMP materials; 12 US Patents			
Objectives:	Provide services, technology (IP), and /or systems to CMP users enabling new visibility and control of polishing kinetics.			
	Reduce the variability, cost, and environmental footprint of CMP			
Current Focus:	Early adopter, characterize variability, closed loop control Licensed partners			

Universal CMP Challenges

4

NCAVS CMPUG April 2016


CMP Variability Sources

Many improvements made in KPIV's

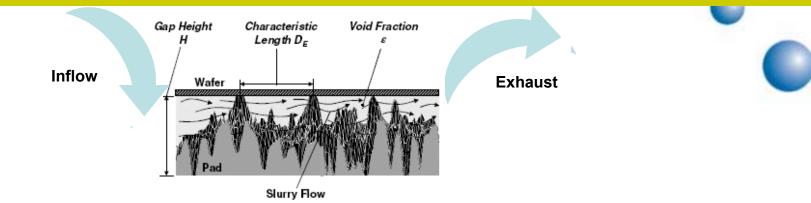
Little visibility into state variation

Key Process Input Variables KPIV's		State Variables	Key Process Output Variables KPOV's
Machine	Down Force, Back Pressure, Platen Velocity, Wafer Carrier Velocity, Slurry Flow, Vibration, etc.	Stress Distribution, Velocity Distribution	Endpoint Control (Remaining Thickness Control)
Polishing pad	Stiffness (or Hardness), Macrostructure, Microstructure, Porosity, Topography, Pattern, etc.	Condition, Wet Hardness, Degradation, Temperature Distribution	Material Removal Rate (Å/min)
Slurry	Oxidizers, pH, pH Stabilizer, Complexing Agents, Dispersants, Selectivity ratio, Temperature	pH drifts, Concentration, Temperature Rise, Slurry Thickness	Planarity : Within Wafer Non- uniformity (WIWNU), Wafer to Wafer Non-uniformity, Within Die Non-uniformity (WIDNU)
Abrasive Particles	Size, Shape, Hardness, Chemistry, Density, Oversized Particles	Size Distribution, Aggregation, Agglomeration, Concentration, Debris	Defects & Contamination : Dishing, Erosion, Micro-scratch, Pits, etc.
Wafer	Size, Curvature, Properties of Coating (<i>E, v, H</i>), Initial Coating Thickness, Coating Thickness Variation, Pattern Geometry	Direct Contact, Semi- Contact, Hydroplaning	Surface Finish : Roughness, Waviness, Form Accuracy

Longer Residence Time = Larger material state variation

90% of fresh slurry carried away by bow wave ¹
Average slipstream residence time 30 seconds ²
70% of steady state mass fraction is 'spent' slurry ³

IPF


NCAVS CMPUG April 2016

ISE

1 Slurry Utilization Efficiency Studies in Chemical Mechanical PlanarizationAra Philipossian and Erin Mitchell 2 Investigating Slurry Transport beneath a Wafer during Chemical Mechanical Polishing Processes; Coppeta,J.,Rogers,C.,Racz,L.,Philipossian,A.,Kaufman,F.B. 3 Muldowney; http://www.avsusergroups.org/cmpug_pdfs/CMP2007_4_Lawing.pdf

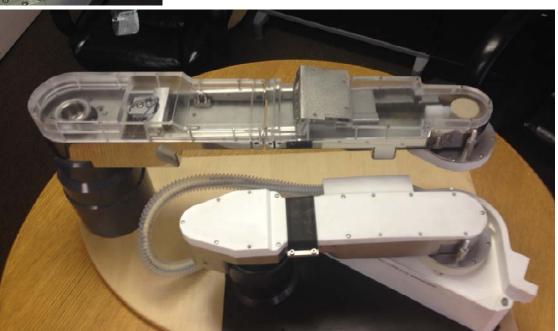
Pad Surface Management (PSM) Methodology

Controlled Interfacial state and residence time

Positively Control Interfacial condition; chemistry, colloids, contact

- Improved Slurry 'inflow' focused replenishment vs. global mixing / dilution
- Controlled waste 'exhaust': volume, timing, location.
- Improved DF control (0.5 -24lbf), integrated cut rate and profile metrology
- In-Line Effluent Instrumentation Concentration, LPC, Conductivity, pH, Species of interest (NIR,Raman), Temp, …
- Localized and contained pad cleaning functions (High pressure microjets)
- Enables advanced process control eliminate oversize particles, reduce slip stream variation, control furrow density, in-situ surface treatments, POU recycle waste correction
- POU recycle, waste segregation.

Jense


NCAVS CMPUG April 2016

Animated video available here:

https://www.youtube.com/watch?feature=player_embedded&v=LBrmIDyKqnE

Pad Surface Manager™

Pad Surface Manager (PSM) - How

- Easy bolt-on arm upgrade < 2 hours</p>
- Sweep, EE rotation, slurry flow via OEM
- Down force integration providing <u>closed loop abrasive force</u> <u>control</u> (counterbalances vacuum); 0.5 – 24 lbs
- Vacuum, wear sensing, and cleaning functions controlled by PSM controller synchronized with OEM recipe (event and setpoint)
- Optional effluent sensing and in line sample capability
- Can be operated as conventional conditioner w/o PSM functions
- Accommodates many abrasive manufacturers disks

EHWATM

ATI™

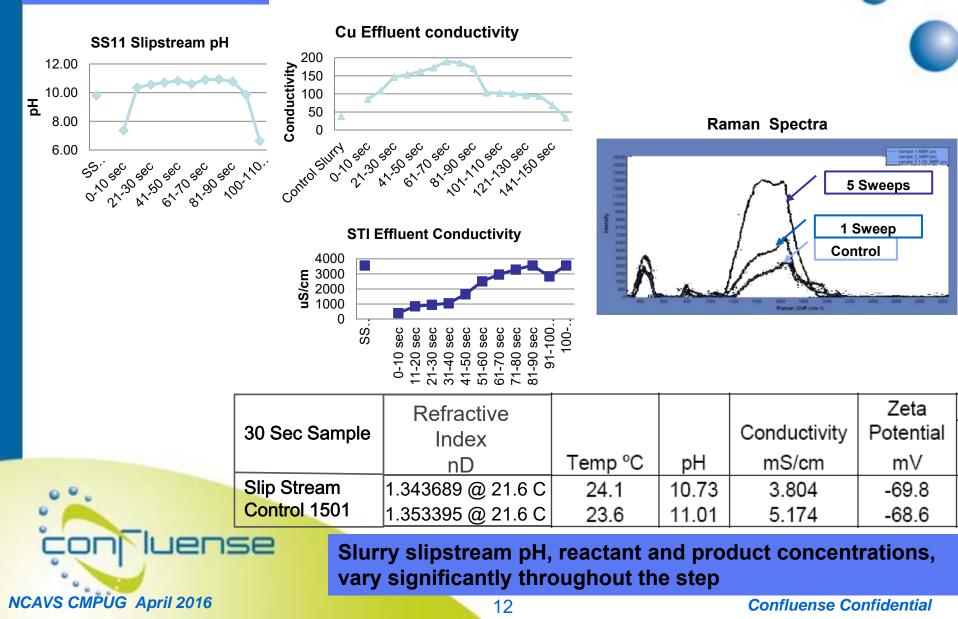
TBWTM

Confluense Confidential

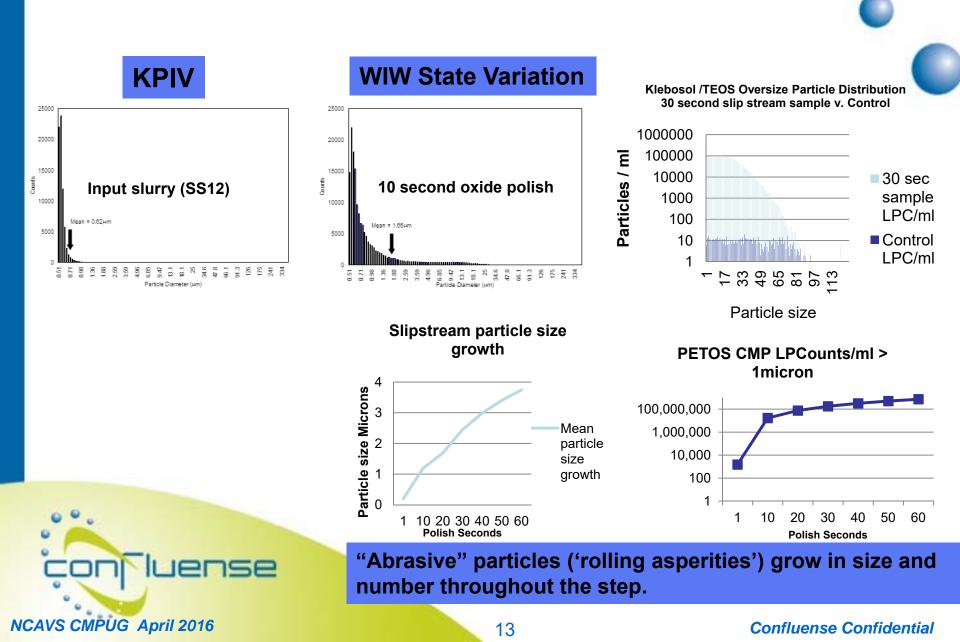
Kinik™

10

"Unseen" Pad Variable Measurements


Pad Temperature rise and cycles affect chemical rates, conditioning abrasive penetration / "chip size" /volume, pad and asperity profile

11


NCAVS CMPUG April 2016

"Unseen" Slurry Variable Measurements

WIW State Variation

"Unseen" Abrasive Variable Measurements

Example: POR vs. 6 second residence

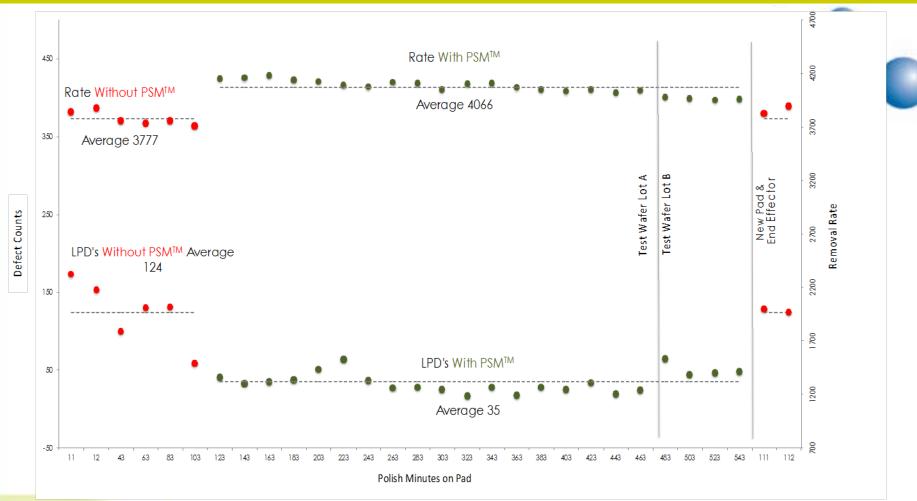
- Wafers / Film Type:
- Slurry / Pad Type:
- Pad Conditioner:
- CMP Process Tool:

Novellus 40KA PeTeos

DOW Klebosol 1501-50, Colloidal Silica IC-1010

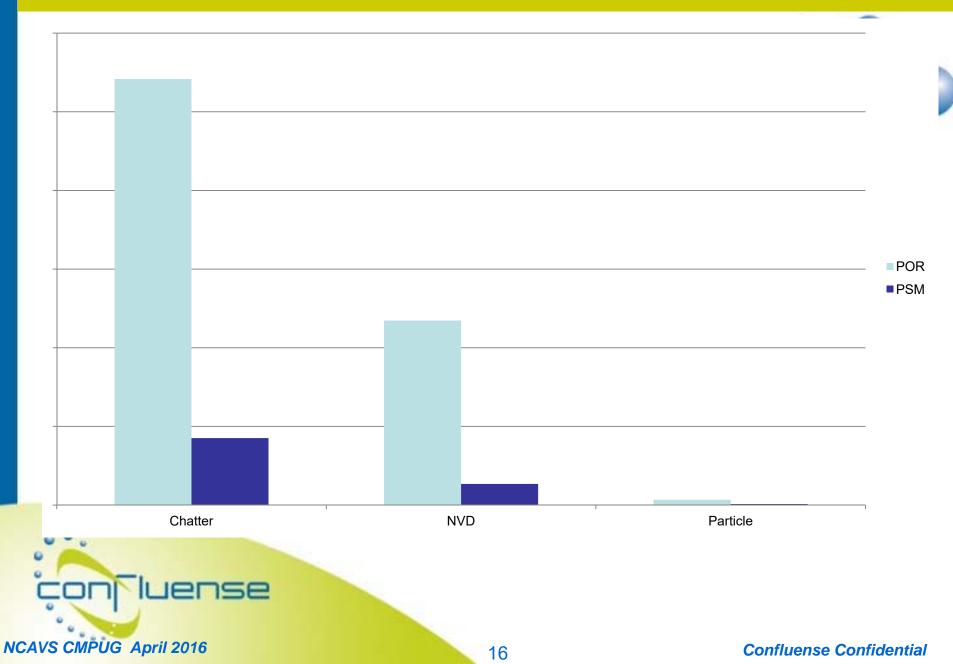
- TBW Grid Abrade for PSM
 - 200mm Mirra running Titan II Heads
- 544 wafers were run with a test wafer placed after every 20 PeTeos dummies. All test wafers were run on the same head. Process was a customer Oxide POR polishing for 60 seconds on Platen 2 with PSM[™] Conditioner followed by 60 sec buff on platen 3 with water. Platen 1 was not used. For baseline, PSM[™] was used without Vacuum for first 100 wafers. The first data point is wafer #11 after 11 min of polish and 41 min of conditioning (30 min Cond Break in). A Control Set of test wafers were repeated at the end without the PSM[™].
- Average Rate w/o PSM™ : 3777 Å/Min

Average Rate with PSM[™]: 4066 Å/Min


- Average LPD's w/o PSM[™] : 124 LPD
- Average LPD's With PSM[™] : 35 LPD

PSM Improvement of 7%

PSM Improvement of 72%


PSM SP1 Defect Results

Non-uniformity (not shown) was stable and unchanged across the run which averaged 3.65 @ 3mm

PSM HF Decorated SEM review

Observed PSM Benefits

- Increased removal rate, slurry utilization efficiency
- Greatly reduced particle counts and defects
- Reduced slip stream (chemical/tribological) variation
- Extended consumable life via reduced dressing duty cycle
- Capable of In-line Effluent Monitoring for more precise slip stream control, real time rate determination, end point
- Contain concentrated waste streams for Recycle and/or EHS improvements, >98% capture rate
- Integrate cleaning or inhibitor steps at landing to reduce cleaning burden and defects

Let us help you see what your missing

- No obligation service offering
- SEE for yourself direct bolt on replacement for OEM arm
 - Installs in <2 hours</p>
 - PSM functions can be turned off and system operates as conventional conditioner
- Capture Slip Stream & characterize variation
- Identify conventional improvement opportunities
- Demonstrate Controlled Residence Time process
 - Reduce detritus volume fraction
 - >>50% defect reduction
 - 30%-50% consumable savings
 - Advanced control opportunities

Thank you

Stephen J. Benner, President

Confluense, <u>www.confluense.com</u>, Email, <u>sjbenner@confluense.com</u> Phone, 215-530-6461

